Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(9): 12933-12947, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38236564

RESUMO

At present, eutrophication is increasingly serious, so it is necessary to effectively reduce nitrogen and phosphorus in water bodies. In this study, a pyrite/polycaprolactone-based mixotrophic denitrification (PPMD) system using pyrite and polycaprolactone (PCL) as electron donors was developed and compared with pyrite-based autotrophic denitrification (PAD) system and PCL-based heterotrophic denitrification (PHD) system through continuous flow experiment. The removal efficiency of NO3--N (NRE) and PO43--P (PRE) and the contribution proportion of PAD in the PPMD system were significantly increased by prolonging hydraulic retention time (HRT, from 1 to 48 h). When HRT was equal to 24 h, the PPMD system conformed to the zero-order kinetic model, so NRE and PRE were mainly limited by the PAD process. When HRT was equal to 48 h, the PPMD system met the first-order kinetic model with NRE and PRE reaching 98.9 ± 1.1% and 91.8 ± 4.5%, respectively. When HRT = 48 h, the NRE and PRE by PAD system were 82.7 ± 9.1% and 88.5 ± 4.7%, respectively, but the effluent SO42- concentration was as high as 152.1 ± 13.7 mg/L (the influent SO42- concentration was 49.2 ± 3.3 mg/L); the NRE by PHD system was 98.5 ± 1.7%, but the PO43--P could not be removed ideally. The concentrations of NO3--N, total nitrogen, PO43--P, and SO42- in the PPMD system also showed distinct changes along the reactor column. In addition, the microbial diversity analysis showed that prolonging HRT (from 24 to 48 h) increased the abundance of autotrophic denitrifying microorganisms in the PPMD system, ultimately increasing the contribution proportion of PAD.


Assuntos
Reatores Biológicos , Desnitrificação , Ferro , Sulfetos , Nitratos/análise , Processos Autotróficos , Nitrogênio
2.
Environ Res ; 236(Pt 2): 116848, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37558114

RESUMO

With pyrite (FeS2) and polycaprolactone (PCL) as electron donors, three denitrification systems, namely FeS2-based autotrophic denitrification (PAD) system, PCL-supported heterotrophic denitrification (PHD) system and split-mixotrophic denitrification (PPMD) system, were constructed and operated under varying hydraulic retention times (HRT, 1-48 h). Compared with PAD or PHD, the PPMD system could achieve higher removals of NO3--N and PO43--P, and the effluent SO42- concentration was greatly reduced to 7.28 mg/L. Similarly, the abundance of the dominant genera involved in the PAD (Thiobacillus, Sulfurimonas, and Ferritrophicum, etc.) or PHD (Syntrophomonas, Desulfomicrobium, and Desulfovibrio, etc.) process all increased in the PPMD system. Gene prediction completed by PICRUSt2 showed that the abundance of the functional genes involved in denitrification and sulfur oxidation all increased with the increase of HRT. This also accounted for the increased contribution of autotrophic denitrification to total nitrogen removal in the PPMD system. In addition, the analysis of metabolic pathways disclosed the specific conversion mechanisms of nitrogen and sulfur inside the reactor.


Assuntos
Desnitrificação , Nitratos , Processos Autotróficos , Nitrogênio , Enxofre , Reatores Biológicos
3.
Biodegradation ; 32(5): 595-610, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34159499

RESUMO

Generally, the purification performance of bioreactors could be influenced by temperature variation via shaping different microbial communities. However, the underlying mechanisms remain largely unknown. Here, the variation trends of microbial communities in three sequencing batch biofilm reactors (SBBRs) under four different temperatures (15, 20, 25, 30 °C) were compared. It was found that temperature increment led to an obvious enhancement in nutrient removal which was mainly occurred in the aerobic section. Meanwhile, distinct differences in dominant microbial communities or autotrophic nitrifiers were also observed. The performance of the SBBR reactors was closely associated with nitrifier communities since the treated wastewater was characterized by a severe lack of carbon sources (mean effluent COD ≤ 14.4 mg/L). Spearman correlation unraveled that: most of the differentiated microbes as well as the dominant potential functions were strongly associated with nutrient removal, indicating the temperature-induced difference in microbial community well explained the distinction in purification performance.


Assuntos
Biofilmes , Reatores Biológicos , Biodegradação Ambiental , Temperatura , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...